
GPU Paralleling of 2D Heat Equation FEM solver
Xujin He(xh1131), Zhiheng Wang(zw3518)∗

New York University
United States

xh1131,zw3518@nyu.edu

ABSTRACT
This study investigates the computational performance of solving
the 2D heat equation in both sequential and CUDA versions. The nu-
merical solver employs a Backward Euler discretization scheme for
temporal evolution, and the Compressed Sparse Row (CSR) Matrix
is utilized for storing the sparse matrices arising from the implicit
time-stepping scheme. The Cholesky decomposition is utilized for
solving linear systems. Both sequential and CUDA implementations
were developed and systematically tested on several computing
systems to evaluate their respective efficiencies.

KEYWORDS
GPU, parallelization, CUDA, 2D heat equation, CSRMatrix, Back-
ward Euler, Cholesky decomposition

1 INTRODUCTION
The numerical solution of partial differential equations (PDEs) is a
fundamental aspect of scientific and engineering simulations, with
applications ranging from heat conduction to fluid dynamics. In the
context of solving the 2D heat equation, the choice of numerical
methods and data structures can significantly influence both the
accuracy and computational efficiency of the solution. In this study,
we focus on the application of the Backward Euler method for
temporal discretization and the use of the Compressed Sparse Row
(CSR) matrix representation for efficient storage of the associated
sparse matrices.

The Backward Euler method is a widely employed implicit time-
stepping scheme known for its stability properties in handling
parabolic PDEs, such as the heat equation. Its implicit nature ne-
cessitates the solution of linear systems at each time step, making
the choice of an appropriate matrix storage format crucial for com-
putational efficiency. In this regard, the CSR matrix format offers
a compact representation for sparse matrices, reducing memory
requirements and enhancing the overall performance of matrix
operations.

Themotivation behind this research lies in optimizing the numer-
ical solution of the 2D heat equation by leveraging the Backward
Euler method and the CSR matrix representation. A key driving
force for this investigation is the recognition that the linear systems
arising from implicit time-stepping schemes, such as the Backward
Euler method, lend themselves to parallel processing. We explore
both sequential and CUDA implementations, targeting diverse com-
puting environments. Our focus is on understanding the impact
of efficient matrix storage and parallel computing on the overall
performance of the solver.

The integration of Cholesky decomposition further adds a layer
of complexity to the numerical solution, and its interaction with

∗

the CSR matrix format is a key aspect of our investigation. By
systematically analyzing the performance of the sequential and
CUDA implementations, we aim to provide valuable insights into
the interplay between numerical methods, sparse matrix storage,
and parallel computing, with implications for a broader range of
scientific simulations.

We list here our main contributions.

(1) We explore efficient ways of storing matrix of large dimen-
sions in CUDA memory by using CSRMatrix.

(2) We accelerate initialization and recursion of Backward Eu-
ler methods using GPU parallel processing.

(3) We design and implement parallelization of Cholesky LDLT
decomposition.

2 MATHEMATICAL PRICIPLES
Explicit methods suffers from stability constraint, that the ratio
between Δℎ and Δ𝑡 must satisfies the Courant-Friedrichs-Lewy
condition for stability; In comparison, implicit methods such as
backward Euler method are proven unconditionally stable for 2D
heat equation, allowing computation with larger time steps. Also,
implicit methods can effectively handle stiff systems of equations,
giving it potential to solve a larger variety of problems.

However, the implicit methods are greatly limited by compu-
tational and memory requirements. On the computational side,
for each time step forward, the implicit methods solves a system
of equations, requiring inversion of a matrix which is very com-
putationally intense. On the memory side, for high dimensional
equations, the matrix size of the linear system grows large easily
and have much higher memory requirements.

What’s more, the curse of dimensional affect finite-difference
methods on higher dimensions drastically, and we expect that par-
allelization

By constructing the linear system to be symmetric positive defi-
nite, we can apply the Cholesky Decomposition, but still this step
will be computationally expensive.

We propose to solve a simple 2D heat equation with Dirichlet
boundary conditions, the diffusivity is assumed to be 1 uniformly.
We use u as the temperature:

𝑢𝑡 (𝑥,𝑦, 𝑡) = Δ𝑢 (𝑥,𝑦, 𝑡), 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌, 𝑡 ≥ 0
𝑢 ((𝑥, 0), 𝑡) = 𝑎(𝑥, 𝑡)
𝑢 ((𝑥,𝑌 ), 𝑡) = 𝑑 (𝑥, 𝑡)
𝑢 ((0, 𝑦), 𝑡) = 𝑏 (𝑦, 𝑡)
𝑢 ((𝑋,𝑦), 𝑡) = 𝑐 (𝑦, 𝑡)

(1)



Xujin He(xh1131), Zhiheng Wang(zw3518)

We employ finite difference method (FEM) with the second-order
central difference scheme (5-point Laplacian) for spatial discretiza-
tion with grid size h (X = mh, Y = nh) yielding 𝑂 (ℎ2) spatial dis-
cretization error.

The system of ODEs follows:

𝑢𝑡 (𝑥, 𝑡) = A𝑢 + 𝑓 (𝑥, 𝑡) (2)

where A is determined by the finite difference scheme, and is
sparse, banded-diagonal matrix; In particular for 5-point laplacian
method, 𝐴 is a matrix with 4 on the diagonal and −1 on the sub-
diagonals; 𝑢 is vector of length𝑚 ∗ 𝑛. 𝑓 (𝑥, 𝑡) is the homogeneous
term plus the adapting terms for boundary conditions.

To solve the system of ODEs, we employ backward Euler method
as an example of implicit methods, which is characterized by solving
a linear system at each time step and yields a total LTE error of
order 𝑂 (ℎ2) +𝑂 (Δ𝑡). For time step 𝑘 :

(𝐼 − Δ𝑡A)𝑈 𝑘+1 = 𝑈 𝑘 + 𝑓 (𝑥, 𝑡)Δ𝑡 (3)

where𝑈 𝑘 = 𝑈 (𝑡 = 𝑘Δ𝑡).
Note 𝐴 = 𝐼 − Δ𝑡A which defines the linear system to solve at

each time step.



𝐶 𝐵

𝐵 𝐶 𝐵

𝐵 𝐶 𝐵

. . .

𝐵 𝐶 𝐵

𝐵 𝐶

𝑚
where C =



1 + 4Δ𝑡
ℎ2 −Δ𝑡

ℎ2

−Δ𝑡
ℎ2 1 + 4Δ𝑡

ℎ2 −Δ𝑡
ℎ2

. . .

−Δ𝑡
ℎ2 1 + 4Δ𝑡

ℎ2 −Δ𝑡
ℎ2

−Δ𝑡
ℎ2 1 + 4Δ𝑡

ℎ2

𝑛
B =


−Δ𝑡
ℎ2

. . .

−Δ𝑡
ℎ2

𝑛

The boundary condition term is 𝑓 =

𝑢0,1 + 𝑢1,0
𝑢0,2
.
.
.

𝑢0,𝑛−1
𝑢0,𝑛 + 𝑢1,𝑛+1

𝑢2,0
0
.
.
.

0
𝑢2,𝑛+1

.

.

.

𝑢𝑚+1,1 + 𝑢𝑚,0
𝑢𝑚+1,2

0
.
.
.

0
𝑢𝑚+1,𝑛−1

𝑢𝑚+1,𝑛 + 𝑢𝑚,𝑛+1

𝑚∗𝑛
Factorizingmatrix𝐴 enables us to solve this linear system quickly

at each time step.We can show that matrix𝐴 is a symmetric positive
definite matrix of dimension𝑚 ∗ 𝑛, which make it possible to use
Cholesky Decomposition. A version of Cholesky Decomposition
Algorithm that avoids the computation of square roots is the LDL
Cholesky Decomposition 𝐴 = 𝐿𝐷𝐿𝑇 , where 𝐿 is lower triangular
matrix with 1 on the diagonal and 𝐷 is a diagonal matrix.

𝐷 𝑗 = 𝐴 𝑗 𝑗 −
𝑗−1∑︁
𝑘=1

𝐿2
𝑗𝑘
𝐷𝑘

𝐿𝑖 𝑗 =
1
𝐷 𝑗

(
𝐴𝑖 𝑗 −

𝑗−1∑︁
𝑘=1

𝐿𝑖𝑘𝐿𝑗𝑘𝐷𝑘

)
, for 𝑖 > 𝑗

With the LDLt decomposition given, the linear system that need
to be solved at each time step is:

𝐿𝐷𝐿𝑇𝑈 𝑘+1 = 𝑈 𝑘 + 𝑓 (𝑥, 𝑡)Δ𝑡 (4)

We can solve the linear system (4) by simply applying forward
substitution, element-wise division, followed by backward substi-
tution.

Forward Substitution:

𝑥𝑖 =
𝑏𝑖 −

∑𝑖−1
𝑗=1 𝐿𝑖 𝑗𝑥 𝑗

𝐿𝑖𝑖
, for 𝑖 = 1, 2, . . . , 𝑛

Backward Substitution:

𝑥𝑖 =
𝑏𝑖 −

∑𝑛
𝑗=𝑖+1 𝐿

𝑇
𝑖 𝑗
𝑥 𝑗

𝐿𝑇
𝑖𝑖

, for 𝑖 = 𝑛, 𝑛 − 1, . . . , 1

For general cases the boundary conditions also need to be com-
puted at each time step, but since we keep boundary condition to
be constant with respect to time this step is not required.



GPU Paralleling of 2D Heat Equation FEM solver

3 SEQUENTIAL IMPLEMENTATION
3.1 CSR Matrix to store sparse matrix
The finite difference method for 2D heat equation suffers from
the curse of dimension, that matrix 𝐴 has dimension (𝑚𝑛) × (𝑚𝑛),
so it is necessary to store the sparse matrices with more efficient
memory structure. Since all computation steps in our algorithms
requires adding in row direction, CSR format is adequate to store
the data information.

0 5 10 15 20 25 30 35 40 45

nz = 226

0

5

10

15

20

25

30

35

40

45

Sparsity Structure of A, m = 8, n = 6

(a) A

0 5 10 15 20 25 30 35 40 45

nz = 305

0

5

10

15

20

25

30

35

40

45

Sparsity Structure of L, m = 8, n = 6

(b) L

Figure 1: Sparsity structure of A and L

CSRMatrix is defined as:

struct CSRMatrix {
double* values; // Array storing non-zero values

of the matrix
int* columns; // Array storing column indices

of non-zero values
int* row_ptr; // Array storing row pointers

(indices where each row starts)
int rows; // Number of rows in the matrix
int capacity; // maximum number of non-zeros
int non_zeros; // Number of non-zero elements

in the matrix; Essentially "Capacity";
}

We also define some help functions such as get_ij(i,j) and
set_ij(i,j) to provide interface when dealing with matrices.

3.2 Initialize CSRMatrix with sparsity structure
Read and write in general CSR format matrices cost 𝑂 (𝑛), but with
observed sparsity structure, it is possible to implement read and
write in 𝑂 (1) just as in array implementation, by pre-allocating all
non-zero terms.

From practice, it is observed that 𝐿 has a fixed sparsity structure,
which is a 𝑛-banded, lower diagonal matrix. We initialize matrix 𝐿
by setting all non-zero values accordingly.

3.3 Sequential Algorithm
From the sparsity structure of 𝐿: 𝐿𝑖 𝑗 = 0 for 𝑖 < 𝑗 and for 𝑖 > 𝑗 − 𝑛,
we can rewrite the formula from (1, 2)

𝐷 𝑗 = 𝐴 𝑗 𝑗 −
𝑗−1∑︁

𝑘=𝑗−𝑛
𝐿2
𝑗𝑘
𝐷𝑘

𝐿𝑖 𝑗 =
1
𝐷 𝑗

©­«𝐴𝑖 𝑗 −
𝑗−1∑︁

𝑘=𝑗−𝑛
𝐿𝑖𝑘𝐿𝑗𝑘𝐷𝑘

ª®¬ , for 𝑗 + 𝑛 > 𝑖 > 𝑗

Accordingly, we write sequential codes to realize the LDL De-
composition, and the pseudo-code is given in Algorithm 1

Solving this linear system can be broke down into three steps:
forward substitution, elementwise division, and backward substitu-
tion.

Algorithm 1 Cholesky Decomposition (L, Lt, D) = chol(A, m, n)
Require: A, m, n

init(L), init(Lt), init(D)
𝑗 ← 0
repeat
𝑠𝑢𝑚𝐿 ← 0
𝑘 ← 0
repeat
𝑠𝑢𝑚𝐿 ← 𝑠𝑢𝑚𝐿 + 𝐿𝑗𝑘 ∗ 𝐿𝑗𝑘 ∗ 𝐷𝑘

𝑘 ← 𝑘 + 1
until 𝑘 =𝑚 ∗ 𝑛
𝐷 𝑗 ← 𝐴 𝑗 𝑗 − 𝑠𝑢𝑚𝐿

𝐿𝑗 𝑗 ← 1
𝐿𝑡 𝑗 𝑗 ← 1
𝑖 ← 𝑗 + 1
repeat
𝑠𝑢𝑚𝐿2← 0
𝑘 ←𝑚𝑎𝑥 (0, 𝑗 − 𝑛)
repeat
𝑠𝑢𝑚𝐿2← 𝑠𝑢𝑚𝐿2 + 𝐿𝑖𝑘 ∗ 𝐿𝑖𝑘 ∗ 𝐷𝑘

𝑘 ← 𝑘 + 1
until 𝑘 = 𝑗

if 𝐴𝑖 𝑗 = 𝑠𝑢𝑚𝐿2 then
𝐿𝑖 𝑗 ← (𝐴𝑖 𝑗 − 𝑠𝑢𝑚𝐿2)/𝐷 𝑗

𝐿𝑡 𝑗𝑖 ← (𝐴𝑖 𝑗 − 𝑠𝑢𝑚𝐿2)/𝐷 𝑗

end if
𝑖 ← 𝑖 + 1

until 𝑖 = 𝑗 + 𝑛 + 1
𝑗 ← 𝑗 + 1

until 𝑗 =𝑚 ∗ 𝑛

Algorithm 2 Backward Euler u = be(u, dt, h, endT, m, n)
Require: u, dt, h, endT, m, n

init(A), init(f)
(L, Lt, D) = chol(A, m, n)
𝑡 ← 0
while 𝑡 < 𝑒𝑛𝑑𝑇 do
𝑏 ← 𝑢 + 𝑑𝑡/ℎ/ℎ ∗ 𝑓
solve(L, Lt, D, b, u)
𝑡 ← 𝑡 + 𝑑𝑡

end while



Xujin He(xh1131), Zhiheng Wang(zw3518)

4 CUDA IMPLEMENTATION:
PARALLELIZATION STRATEGIES

4.1 Initialization:
The initialization is crucial for CSR matrix setup, which eliminate
the need of inserting new non-zero values into the CSR structure.
Our algorithm first initialize the matrices 𝐴 and 𝐿 based on the
known sparsity structure, which is trivially parallelizable. Leverag-
ing this inherent structure, we parallelize the initialization process
in GPU. This ensures an efficient setup of the CSR matrices, which
facilitates subsequent parallel computation.

4.2 Cholesky Decomposition:
The core of our focus lies in the parallelization of the Cholesky
decomposition steps, given its significant computational demand.
Despite the sequential nature of Cholesky LDL decomposition, we
identify a parallelizable pattern within the computation of the sum
of elementwise product, as well as the computation of each element
in each column.

As illustrated by Figure 2, the known entries are marked yel-
low, the entry being computed is marked red, and the depended
entries are marked in green and blue. The first subfigure at each
row indicate computation of diagonal elements, and the following
subfigures indicate computation of elements below diagonal.

It is observed that the computation of each element below di-
agonal is depended on the 𝑗th row of 𝐿 (indicated in blue, which
can be shared across all elements) and the 𝑖th row of 𝐿 (indicated
in green)

In real practice, the Cholesky decomposition dominates the com-
putational workload, which proves the necessity of our strategy
exploiting parallelism to the granular-level calculation.

4.2.1 Cholesky Decomposition Step: Update Diagonal Elements.
This is basically a reduction sum of element-wise products. We
choose gridsize = 1 and constant block_size, which means we
use one thread to compute one product; and store it in a shared
memory array; Then we perform a reduction sum and assign the
value to 𝐿𝑗 𝑗 , the pseudocode for the algorithm is described below:
// gridsize = 1; blocksize = fixed_block_size
// load into shared
__shared__ double sdata[blocksize];
tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int local_k = 0; local_k < J; local_k+=blockDim.x)
{

global_k = Lcolumns[Lrow_ptr[J]]
+ local_k*blockDim.x+threadIdx.x;

Ljk = L.get_ij(J, global_k);
sdata[tid] += Ljk * Ljk * D[global_k];

}
__syncthreads();
// reduction by sequential addressing
for (int s = block_size/2; s > 0; s >>= 1)
{

if (tid < s) sdata[tid] += sdata[tid + s];
__syncthreads();

}
// write back

if (tid == 0) {
// AJJ is a fixed value
AJJ = 1 + 4 * invhsq_dev * tau_dev;
D[J] = AJJ - sdata[0];
Lvalues[Lrow_ptr[J+1]-1] = 1; // Ljj = 1;

}

4.2.2 Cholesky Decomposition Step: Update Elements Below Di-
agonal. Although the overall decomposition steps depend on the
results of prior iterations, the calculation of sum within each step
is inherently parallel. As the observation above indicated, for the
computation of 𝑗th column, each element below the diagonal is
independent from each other; Also, the computation of reduction
sum is also parallelizable, which leads to a two-level parallelize
strategy; Depending on the number of 𝑛, we proposed two possible
designs of grid size and kernel size:

(1) For 𝑛 value smaller than total blocks available, we can use
one block to compute each element under diagonal, and
use a fix number of threads per block to compute reduction
sum to make sure the shared memory per block does not
exceed maximum. In our final application, we applied this
algorithm.

(2) For𝑛 value larger than the total blocks available, we can use
𝑜𝑛𝑒2 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑏𝑙𝑜𝑐𝑘 which covers the 𝑛 × 𝑛 triangle,
and the number of threads need to be 𝑛 ∗ (𝑛 − 1)/2. The
indexing in this case is a bit complicated so we haven’t
finish it yet.

(3) For 𝑛 value that 𝑛 ∗ (𝑛 − 1)/2 is larger than the number of
maximum threads per block, we need to use a fixed number
of block and threads such that each block compute more
than one entry. Due to the complexity of indexing in this
case, we haven’t produce a reasonable parallel solver.

// gridsize = n, blocksize fixed
// Compute Elements below Column J
// Assume L and Lt have zeros pre-allocated

const double DJ = D[J];

// use shared memory for sum
extern __shared__ double suml2[];
suml2[threadIdx.x] = 0;
__syncthreads();

// compute the sum
const int global_i = J + 1 + blockDimx.x;
int ith_row_len = row_len - 1 - threadIdx.x;
if (global_i < n) ith_row_len = n;

for (int local_k = threadIdx.x;
local_k < ith_row_len;
local_k += blockDim.x)

{
const int global_k = global_i - col_len + local_k;

if (global_k >= 0 && global_k < J) {
Lik = L.get_ij(global_i, global_k);
Ljk = L.get_ij(J, global_k);
Dk = D[global_k];
suml2[threadIdx.x] += Lik * Ljk * Dk;



GPU Paralleling of 2D Heat Equation FEM solver

}
}
__syncthreads();

// reduction by sequential addressing
for (int s = blockDim.x/2; s > 0; s >>= 1)
{

if (threadIdx.x < s)
{
suml2[threadIdx.x] += suml2[threadIdx.x + s];

}
__syncthreads();

}

// assign to L_ij and Lt_ij
if (threadIdx.x == 0)
{

const double Aij = A.get_ij(global_i, J);
double val = (Aij - suml2[0]) / DJ;
L.set_ij(L, global_i, J, val);
L.set_ij(Lt, J, global_i, val);

}

Figure 2: dependency of LDL decomposition

4.3 Backward Euler Steps
In our experiment, we did not include the parallerization of Back-
ward Euler steps, but we recognize the possibility of parallelizing
the sum within Forward/Backward substitution;

4.3.1 Backward Euler Steps: Solving Linear system. The paralleliza-
tion of elementwise division is trivial; Despite the dependency be-
tween column-wise update steps, the sum of element-wise product
operation in forward and backward substitution are also inherently
parallelizable.

4.3.2 Backward Euler Steps: Computation of boundary elements.
The update of boundary terms during the Backward Euler steps
involve computing the boundary value and adding two vectors,
which is clearly a parallelizable task. As each boundary element’s
update is independent of the others, we can exploit parallelism

Figure 3: Parallize computation of off-diagonal terms

to concurrently compute these updates. This straightforward par-
allelization can accelerates the computation algorithm in spatial
domain.

5 EXPERIMENT
5.1 Experiment Settings
The sequential code and CUDA code are performed separately on
NYU Greene HPC server. We tested by solving the 2D heat equation
on heat grids with dimension 50 ∗ 50, 75 ∗ 75, 100 ∗ 100, 125 ∗ 125,
150 ∗ 150, 200 ∗ 200, and performed 100 Backward Euler steps. The
total computation time is computed and plotted.

Figure 4: Table: average runtime

50 100 150 200

dimension

10 -1

10 0

10 1

10 2

10 3

lo
g

 s
c
a

le
 t

im
e

seq

cuda1

cuda3

cuda5

Figure 5: Plot: CPU vs GPU runtime



Xujin He(xh1131), Zhiheng Wang(zw3518)

The sequential code is performed on single CPU on NYU Greene
without optimization.

The CUDA code is performed on single GPU on NYU Greene,
and the GPU configurations are provided in the appendix.

5.2 Experiment Results
We test three times for sequential version and each cuda cluster
and compute the average time. The result is shown in table (4) and
plot (5).

5.3 Experiment Analysis
5.3.1 Observation: As the graph indicated, the run time of the
sequential code grow exponentially as the dimension of the heat
map grows;

In comparison, the performance of the GPU code is growing
much slower than sequential code.

5.3.2 Limitation: For larger 𝑛 value, however, our algorithm that
pick gridDimx = n may be limited by the maximum number of
blocks per grid. Also, since we used shared array to compute the
sum, the total shared memory available in GPU is also a limiting
factor.

6 APPENDIX
6.1 GPU Configuration
6.1.1 NYU Greene cuda1:

name: NVIDIA GeForce GTX TITAN Black
Compute capability 3.5
total global memory(KB): 6229696
shared mem per block: 49152
regs per block: 65536
warp size: 32
max threads per block: 1024
max thread dim x:1024 y:1024 z:64
max grid size x:2147483647 y:65535 z:65535
clock rate(KHz): 980000
total constant memory (bytes): 65536
multiprocessor count 15
integrated: 0
async engine count: 1
memory bus width: 384
memory clock rate (KHz): 3500000
L2 cache size (bytes): 1572864
max threads per SM: 2048

6.1.2 NYU Greene cuda3:

name: NVIDIA TITAN V
Compute capability 7.0
total global memory(KB): 12356288
shared mem per block: 49152
regs per block: 65536
warp size: 32
max threads per block: 1024
max thread dim x:1024 y:1024 z:64
max grid size x:2147483647 y:65535 z:65535
clock rate(KHz): 1455000

total constant memory (bytes): 65536
multiprocessor count 80
integrated: 0
async engine count: 7
memory bus width: 3072
memory clock rate (KHz): 850000
L2 cache size (bytes): 4718592
max threads per SM: 2048

6.1.3 NYU Greene cuda5:

name: NVIDIA GeForce GTX TITAN Z
Compute capability 3.5
total global memory(KB): 6229696
shared mem per block: 49152
regs per block: 65536
warp size: 32
max threads per block: 1024
max thread dim x:1024 y:1024 z:64
max grid size x:2147483647 y:65535 z:65535
clock rate(KHz): 915000
total constant memory (bytes): 65536
multiprocessor count 15
integrated: 0
async engine count: 1
memory bus width: 384
memory clock rate (KHz): 3505000
L2 cache size (bytes): 1572864
max threads per SM: 2048

6.2 Visualization
Picking heat map grid size ℎ = 0.01 and 𝑡𝑎𝑢 = 0.01, we visualize the
computed solutions at final time 𝑇 = 0.1 and 𝑇 = 1 at resolution
200𝑥200, setting the top and left boarder boundary condition to be
constant 3, right and bottom boundary condition to be constant 10.

The values are linearly interpolated between RGB (0, 0, 255) and
(255, 0, 0) color to visualize the heat distribution, which displayed
a desired pattern of heat flow.

(a) T=0.1 (b) T=1

Figure 6: Visualization of Heat map


	Abstract
	1 Introduction
	2 Mathematical Priciples
	3 Sequential Implementation
	3.1 CSR Matrix to store sparse matrix
	3.2 Initialize CSRMatrix with sparsity structure
	3.3 Sequential Algorithm

	4 CUDA Implementation: Parallelization Strategies
	4.1 Initialization:
	4.2 Cholesky Decomposition:
	4.3 Backward Euler Steps

	5 Experiment
	5.1 Experiment Settings
	5.2 Experiment Results
	5.3 Experiment Analysis

	6 Appendix
	6.1 GPU Configuration
	6.2 Visualization


